วันเสาร์ที่ 29 สิงหาคม พ.ศ. 2552

เลนส์นูน

อ้างอิงจากเว็บไซต์ เลนส์นูน.[ออนไลน์].เข้าถึงจาก:
http://www.maceducation.com/e-knowledge/2432209100/20.htm

เลนส์นูน
เลนส์นูน (convex lens) คือ เลนส์ที่มีลักษณะหนาตรงกลางและบางที่ขอบ ดังรูป
รูปแสดงลักษณะเลนส์นูน

รูปแสดงส่วนสำคัญและรังสีบางรังสีของเลนส์
เลนส์นูนทำหน้าที่รวมแสงขนานไปตัดกันที่จุดๆ หนึ่ง ซึ่งแนวหรือทิศทางของแสงที่เข้ามายังเลนส์สามารถเขียนแทนด้วยรังสีของแสง ถ้าแสงมาจากระยะไกลมากเรียกระยะนี้ว่า " ระยะอนันต์"เช่น แสงจากดวงอาทิตย์หรือดวงดาวต่างๆ แสงจะส่องมาเป็นรังสีขนาน เมื่อรังสีของแสงผ่านเลนส์จะมีการหักเหและไปรวมกันที่จุดๆ หนึ่งเรียกว่า "จุดโฟกัส (F)" ระยะจากจุดโฟกัสถึงกึ่งกลางเลนส์ เรียกว่า "ความยาวโฟกัส (f)" และเส้นตรงที่ลากผ่านจุดศูนย์กลางความโค้งของผิวทั้งสองของเลนส์เรียกว่า " แกนมุขสำคัญ (principal axis)"
ภาพที่เกิดจากเลนส์นูนภาพจากเลนส์นูนเป็นภาพที่เกิดจากรังสีหักเหไปพบกันที่จุดๆ หนึ่ง ซึ่งมีทั้งภาพจริงและภาพเสมือนขึ้นอยู่กับตำแหน่งวัตถุที่วางหน้าเลนส์ ดังรูป


รูปแสดงตัวอย่างภาพจริงและภาพเสมือนที่เกิดจากเลนส์นูน




(ก) การเกิดภาพเมื่อวัตถุอยู่ห่างเลนส์นูนระยะไกลกว่าความยาวโฟกัส



(ข) การเกิดภาพเมื่อวัตถุอยู่ห่างจากเลนส์นูนที่ระยะใกล้กว่าความยาวโฟกัส


การหาชนิดและตำแหน่งของภาพจากวิธีการคำนวณ

การหาตำแหน่งภาพที่ผ่านมาใช้วิธีเขียนแผนภาพของรังสี ยังมีอีกวิธีที่ใช้หาตำแหน่งภาพคือ วิธีคำนวณ ซึ่งสูตรที่ใช้ในการคำนวณมีดังต่อไปนี้
สูตร =


เมื่อ m คือ กำลังขยายของเลนส์

I คือ ขนาดหรือความสูงของภาพ
O คือ ขนาดหรือความสูงของวัตถุ

ในการคำนวณหาตำแหน่งและชนิดของภาพจะต้องมีการกำหนดเครื่องหมาย 1 และ 2 สำหรับปริมาณต่างๆ ในสมการดังนี้1. s มีเครื่องหมาย + ถ้าวัตถุอยู่หน้าเลนส์ และ s มีเครื่องหมาย - ถ้าวัตถุอยู่หลังเลนส์2. s' มีเครื่องหมาย + ถ้าวัตถุอยู่หลังเลนส์ และ s' มีเครื่องหมาย - ถ้าวัตถุอยู่หน้าเลนส์3. f ของเลนส์นูนมีเครื่องหมาย + และ f ของเลนส์เว้ามีเครื่องหมาย -
ตัวอย่างที่ 2 วางวัตถุห่างจากเลนส์นูนเป็นระยะ 12 เซนติเมตร ถ้าเลนส์นูนมีความยาวโฟกัส 5 เซนติเมตร จะเกิดภาพชนิดใด และที่ตำแหน่งใด

ตัวอย่างที่ 3 วางวัตถุห่างจากเลนส์นูนเป็นระยะ 25 เซนติเมตร ปรากฏว่าเกิดภาพเสมือนห่างจากเลนส์ 15 เซนติเมตร เลนส์นี้เป็นเลนส์ชนิดใดและมีความยาวโฟกัสเท่าไรวิธีทำ จากสูตร
ค่า f เป็นลบ มีค่า 37.5 เซนติเมตร เป็นเลนส์เว้า ตอบ





วันศุกร์ที่ 14 สิงหาคม พ.ศ. 2552

คุณสมบัติของแสง

อ้างอิงจากเว็บไซด์ คุณสมบัติของแสง.(ออนไลน์).เข้าถึงจาก:

คุณสมบัติของแสง

แสงจะมีคุณสมบัติที่สำคัญ 4 ข้อ ได้แก่ การเดินทางเป็นเส้นตรง (Rectilinear propagation) , การหักเห (Refraction) , การสะท้อน (Reflection) และการกระจาย (Dispersion) การเดินทางแสงเป็นเส้นตรง ในตัวกลางที่มีค่าดัชนีการหักเห (refractive index ; n) ของแสงเท่ากัน แสงจะเดินทางเป็นเส้นตรงโดยค่า n สามารถหาได้จากสมการ

(2.1) โดยที่ คือ ความเร็วของแสงในสูญญากาศ คือ ความเร็วของแสงในตัวกลางนั้นๆ



รูปที่ 2.1 ช่วงแถบความถี่แม่เหล็กไฟฟ้าที่ใช้ในการสื่อสารเส้นใยแสง
ตัวกลาง ค่าดัชนีการหักเห อากาศ 1 เพชร 2.42 แก้ว 1.5 - 1.9 เส้นใยแสง 1.5 น้ำ 1.33 ตารางที่ 2.2 ค่าดัชนีการหักเหโดยปกติของตัวกลางต่างๆ
การสะท้อน
การสะท้อนของแสงสามารถแบ่งออกได้เป็น 2 ลักษณะ คือ » การสะท้อนแบบปกติ (Regular reflection) จะเกิดขึ้นเมื่อแสงตกกระทบกับวัตถุที่มีผิวเรียบมันวาวดังรูปที่ 2.2



รูปที่ 2.2 การสะท้อนแบบปกติ

» การสะท้อนแบบกระจาย (Diffuse reflection) จะเกิดขึ้นเมื่อแสงตกกระทบวัตถุที่มีผิวขรุขระดังรูปที่ 2.3


รูปที่ 2.3 การสะท้อนแบบกระจาย

โดยการสะท้อนของแสงไม่ว่าจะเป็นแบบใดก็ตามจะต้องเป็นไปตามกฎการสะท้อนของแสงที่ว่า "มุมสะท้อนเท่ากับมุมตกกระทบ" ซึ่งแสดงให้ดูในรูปที่ 2.4
รูปที่ 2.4 กฎการสะท้อนของแสง
การหักเห
การหักเหของแสงจะเกิดขึ้นเมื่อแสงเดินทางผ่านตัวกลางที่มีค่าดัชนีการหักเหไม่เท่ากัน โดยลำแสงที่ตกกระทบจะต้องไม่ทำมุมฉากกับรอยต่อระหว่างตัวกลางทั้งสอง และมุมตกกระทบต้องมีค่าไม่เกินมุมวิกฤต (Critical angel ; ) โดยการหักเหของแสงสามารถแบ่งออกได้เป็น 3 กรณี คือ
» n1 < n2 แสงจะหักเหเข้าหาเส้นปกติ



รูปที่ 2.5 การหักเหของแสงกรณี n1 <>

จากรูปที่ 2.5 ระยะเวลาที่แสงใช้ในการเดินทางในช่วง BC จะเท่ากับระยะเวลาที่แสงใช้ในการเดินทางในช่วง B'C' ซึ่งสามารถเขียนเป็นสมการได้ดังสมการ เมื่อพิจารณารูปสามเหลี่ยม BCC' และ BB'C' จะได้ความสัมพันธ์ทางตรีโกณ
» n1 > n2 แสงจะหักเหออกจากเส้นปกติ

รูป 2.6 การหักเหของแสงกรณี n1 > n2

จากรูปที่ 2.6 จะเห็นว่าระยะทาง BC มีค่ามากกว่า B'C' เนื่องจากระยะทาง BC เป็นการเดินทางของแสงในตัวกลางที่มีค่าดัชนีการหักเหน้อยกว่า ดังนั้นในระยะเวลาเท่ากันแสงจะสามารถเดินทางได้มากกว่า »
การสะท้อนกลับหมด (Total Internal Reflection)
การเกิดการสะท้อนกลับหมดของแสงจะเกิดขึ้นได้ก็ต่อเมื่อค่าดัชนีการหักเหของตัวกลางที่ 1 มีค่ามากกว่าดัชนีการหักเหของตัวกลางที่ 2 (n1 > n2) และ ซึ่งจะส่งผลให้ มีค่าเท่ากับ หรือมากกว่าโดยเราสามารถหาค่า ได้จาก Snell's Law เมื่อ จะเกิดการสะท้อนกลับหมดของแสงซึ่งจะได้ ดังนั้น ดังนั้นจะได้

รูปที่ 2.7 การสะท้อนกลับหมดของแสง
ในรูปที่ 2.8 แสดงตัวอย่างของการสะท้อนกลับหมดของแสง โดยการมองเครื่องบินที่อยู่ในอากาศจากใต้น้ำ ซึ่งจะสามารถมองเห็นเครื่องบินได้ก็ต่อเมื่อเรามองทำมุมกับผิวน้ำมากกว่า ค่าดังกล่าวได้มาจากการคำนวณมุมวิกฤตดังนี้


รูปที่ 2.8 ตัวอย่างการสะท้อนกลับหมดของแสง

จากสมการ แทนค่า n2=1 และ n1=1.33 จะได้ ดังนั้นการมองจะต้องทำมุมกับเส้นปกติน้อยกว่า จึงจะสามารถมองเห็นเครื่องบินได้ ถ้าเรามองทำมุมกับเส้นปกติเท่ากับหรือมากกว่า จะทำให้เกิดการสะท้อนกลับหมดของแสงจึงไม่สามารถมองเห็นเครื่องบินได้ ซึ่งปรากฏการณ์การสะท้อนกลับหมดของแสงนี้จะทำให้แสงสามารถเดินทางไปในเส้นใยแสงได้
การกระจาย
ในการพิจารณาการเดินทางของแสงที่ผ่านๆ มา เราสมมติให้แสงที่เดินทางมีความยาวคลื่นเพียงความยาวคลื่นเดียวซึ่งเราเรียกแสงชนิดนี้ว่า "Monochromatic" แต่โดยธรรมชาติของแสงแล้วจะประกอบด้วยความยาวคลื่นหลายความยาวคลื่นผสมกัน ซึ่งเราเรียกว่า "Polychromatic" ดังแสดงในรูปที่ 2.9 จะเห็นว่าแสงสีขาวจะสามารถแยกออกเป็นแสงสีต่างๆ (ความยาวคลื่นต่างๆ) ได้ถึง 6 ความยาวคลื่นโดยใช้แท่งแก้วปริซึม ซึ่งกระบวนการที่เกิดการแยกแสงออกแสงออกมานี้ เราเรียกว่า "การกระจาย (Dispersion)"


รูปที่ 2.9 การกระจายของแสงสีขาว


การกระจายของแสงนี้จะตั้งอยู่บนความจริงที่ว่า "แสงที่มีความยาวคลื่นต่างกันจะเดินทางด้วยความเร็วที่ต่างกันในตัวกลางเดียวกัน" นอกจากคุณสมบัติดังกล่าวทั้ง 4 ข้อแล้ว แสงยังมีคุณสมบัติอื่นๆ อีกคือ
1. แสงจัดเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic wave) ชนิดหนึ่ง
2. คลื่นแสงเป็นคลื่นมี่มีการเปลี่ยนแปลงตามขวาง (Transverse wave) ซึ่งทั้ง 2 กรณีนี้ ทำให้เราสามารถสรุปได้ว่าคลื่นแสงเป็นคลื่น TEM โดยลักษณะการเดินทางของแสงแสดงในรูปที่ 2.10


รูปที่ 2.10 การเดินทางของคลื่นแสง
รุ้งกินน้ำ
เป็นการกระจายของแสง เกิดจากแสงขาวหักเหผ่านผิวของละองน้ำ ทำให้แสงสีต่าง ๆ กระจายออกจากกันแล้วเกิดการสะท้อนกลับหมดที่ผิวด้านหลังของละอองน้ำแล้วหักเหออกสู่อากาศ ทำให้แสงขาวกระจายออกเป็นแสงสีต่าง ๆ กัน แสงจะกระจายตัวออกเมื่อกระทบถูกผิวของตัวกลาง เราใช้ประโยชน์จากการกระจายตัวของลำแสง เมื่อกระทบตัวกลางนี้ เช่น ใช้แผ่นพลาสติกใสปิดดวงโคมพื่อลดความจ้าจากหลอดไฟหรือ โคมไฟชนิดปิดแบบต่าง ๆ

ภาพรุ้งกินน้ำ การทะลุผ่าน (Transmission) การทะลุผ่าน หมายถึงการที่แสงพุ่งชนตัวกลางแล้วทะลุผ่านมันออกไปอีกด้านหนึ่ง โดยที่ความถี่ไม่เปลี่ยนแปลงวัตถุที่มีคุณสมบัติการทะลุผ่านได้ เช่น กระจก ผลึกคริสตัล พลาสติกใส น้ำและของเหลวต่าง ๆ
การดูดกลืน (Absorbtion)
การดูดกลืน หมายถึง การที่แสงถูกดูดกลืนหายเข้าไปในตัวกลางดยทั่วไปเมื่อมีพลังงานแสงถูกดูดกลืนหายเข้าไปในวัตถุใด ๆเช่น เตาอบพลังงานแสงอาทิตย์ เครื่องต้มน้ำพลังงานแสง และยังนำคุณสมบัติของการดูดกลืนแสงมาใช้ในชีวิตประจำวัน เช่น การเลือกสวมใส่เสื้อผ้าสีขาวจะดูดแสงน้อยกว่าสีดำ จะเห็นได้ว่าเวลาใส่เสื้อผ้าสีดำ อยู่กลางแดดจะทำให้ร้อนมากกว่าสีขาว การแทรกสอด (Interference) การแทรกสอด หมายถึง การที่แนวแสงจำนวน 2 เส้นรวมตัวกันในทิศทางเดียวกัน หรือหักล้างกัน หากเป็นการรวมกัน ของแสงที่มีทิศทางเดียวกัน ก็จะทำให้แสงมีความสว่างมากขึ้น แต่ในทางตรงกันข้ามถ้าหักล้างกัน แสงก็จะสว่างน้อยลด การใช้ประโยชน์จากการสอดแทรกของแสง เช่น กล้องถ่ายรูปเครื่องฉายภาพต่าง ๆ และการลดแสงจากการสะท้อน ส่วนในงานการส่องสว่าง จะใช้ในการสะท้อนจากแผ่นสะท้อนแสง
สรุป
คุณสมบัติต่าง ๆ ของแสงแต่ละคุณสมบัตินั้น เราสามารถนำหลักการมาใช้ประโยชน์ได้หลายอย่าง เช่น คุณสมบัติของการสะท้อนแสงของวัตถุ เรานำมาใช้ในการออกแบบแผ่นสะท้อนแสงของโคมไฟ การหักเหของแสงนำ มาออกแบบแผ่นปิดหน้าโคมไฟ ซึ่งเป็นกระจก หรือพลาสติกเพื่อบังคับทิศทางของแสงไฟ ที่ออกจากโคมไปในทิศที่ต้องการ การกระจายตัวของลำแสงเมื่อกระทบตัวกลางเรานำมาใช้ประโยชน์ เช่นใช้แผ่นพลาสติกใสปิดดวงโคมเพื่อลดความจ้าจากหลอดไฟ ต่าง ๆ การดูดกลืนแสง เรานำมาทำ เตาอบพลังงานแสงอาทิตย์เครื่องต้มพลังงานแสง และการแทรกสอดของแสง นำมาใช้ประโยชน์ในกล้องถ่ายรูป เครื่องฉายภาพต่าง ๆ จะเห็นว่าคุณสมบัติแสงดังกล่าวก็ได้นำมาใช้ในชีวิตประจำวันของมนุษย์เราทั้งนั้น

กล้องจุลทรรศน์

กล้องจุลทรรศน์ (Microscope)
กล้องจุลทรรศน์เป็นอุปกรณ์ที่ช่วยให้เรามองเห็นวัตถุที่มีขนาดเล็กมาก ประกอบด้วยเลนส์นูนความยาวโฟกัสสั้น ๆ 2 อัน โดยเลนส์อันหนึ่งอยู่ใกล้วัตถุเรียกว่าเลนส์ใกล้วัตถุ (Objective Lens) และเลนส์อันหนึ่งอยู่ใกล้ตาเรียกว่าเลนส์ใกล้ตา(Eyepiece Lens) โดยความยาวโฟกัสของเลนส์ใกล้วัตถุน้อยกว่าความยาวโฟกัสของเลนส์ใกล้ตามาก


วางวัตถุไว้ในระหว่าง ของเลนส์ใกล้วัตถุ จะได้ภาพจริงขนาดขยายอยู่หน้าเลนส์ใกล้ตาโดยจะเป็นวัตถุเสมือนของเลนส์ใกล้ตา โดยวัตถุเสมือนนี้ จะต้องอยู่ระหว่างความยาวโฟกัสของเลนส์ใกล้วัตถุกับเลนส์ เกิดภาพเสมือนขนาดขยายที่ระยะที่เห็นชัดปกติของตา คือประมาณ 25 เซนติเมตร โดยในทาง ปฏิบัติวิธีทำให้เห็นภาพชัดเรียกว่าการโฟกัสภาพทำได้โดยเลื่อนเลนส์ใกล้ตาเพื่อปรับระยะวัตถุให้เหมาะสมที่จะเกิดภาพที่ระยะเห็นได้ชัดเจน


รูปที่ 24 แสดงทางเดินแสงของกล้องจุลทรรศน์
ความยาวของตัวกล้องจุลทรรศน์ (Length 0f Microscope , L) คือระยะระหว่างเลนส์วัตถุถึงเลนส์ตา
L = (20)
โดยที่ แทนระยะภาพของเลนส์ใกล้วัตถุ
แทนระยะวัตถุของเลนส์ใกล้ตา

กำลังขยายของกล้องจะมีค่าขึ้นกับผลคูณของกำลังขยายของเลนส์ใกล้ตากับเลนส์ใกล้วัตถุ

ประวัติของกล้องจุลทรรศน์
สิ่งมีชีวิตขนาดเล็กที่ไม่สามารถมองเห็นด้วยตาเปล่า เดิมใช้เพียงแว่นขยายและเลนส์อันเดียวส่องดู คงเช่นเดียวกับการใช้แว่นขยายส่องดูลายมือ ในระยะต่อมา กาลิเลอิ กาลิเลโอ ได้สร้างแว่นขยายส่องดูสิ่งมีชีวิตเล็กๆในราวปี พ.ศ. 2153
ในช่วงปี พ.ศ. 2133 ช่างทำแว่นตาชาวฮอลันดาชื่อ แจนเสนประดิษฐ์กล้องจุลทรรศน์ชนิดเลนส์ประกอบ ประกอบด้วยแว่นขยายสองอัน
ในปี พ.ศ. 2208 โรเบิร์ต ฮุก ได้ประดิษฐ์กล้องจุลทรรศน์ชนิดเลนส์ประกอบที่มีลำกล้องรูปร่างสวยงาม ป้องกันการรบกวนจากแสงภายนอกได้ และไม่ต้องถือเลนส์ให้ซ้อนกัน (ดูภาพในกล่องข้อความประกอบ) เขาส่องดูไม้คอร์กฝานบางๆ แล้วพบช่องเล็กๆมากมาย เขาเรียกช่องเหล่านั้นว่าเซลล์ ซึ่งหมายถึงห้องว่างๆ หรือห้องขัง เซลล์ที่ฮุกเห็นเป็นเซลล์ที่ตายแล้ว เหลือแต่ผนังเซลล์ของพืชซึ่งแข็งแรงกว่าเยื่อหุ้มเซลล์ในสัตว์ จึงทำให้คงรูปร่างอยู่ได้ ฮุกจึงได้ชื่อว่าเป็นผู้ตั้งชื่อเซลล์
ในปี พ.ศ. 2215 แอนโทนี แวน ลิวเวนฮุค ชาวฮอลันดา สร้างกล้องจุลทรรศน์ชนิดเลนส์เดียวจากแว่นขยายที่เขาฝนเอง แว่นขยายบางอันขยายได้ถึง 270 เท่า เขาใช้กล้องจุลทรรศน์ตรวจดูหยดน้ำจากบึงและแม่น้ำ และจากน้ำฝนที่รองไว้ในหม้อ เห็นสิ่งมีชีวิตเล็กๆมากมายนอกจากนั้นเขายังส่องดูสิ่งมีชีวิตต่างๆ เช่น [(([เม็ดเลือดแดง]))], เซลล์สืบพันธุ์สัตว์ตัวผู้, กล้ามเนื้อ เป็นต้น เมื่อเขาพบสิ่งเหล่านี้ เขารายงานไปยังราชสมาคมแห่งกรุงลอนดอน จึงได้รับการยกย่องว่าเป็นผู้ประดิษฐ์กล้องจุลทรรศน์
ปี พ.ศ. 2367 ดูโธรเชต์ นักพฤกษศาสตร์ชาวฝรั่งเศสศึกษาเนื้อเยื่อพืช และสัตว์พบว่าประกอบด้วยเซลล์
ปี พ.ศ. 2376 โรเบิร์ต บราวน์ นักพฤกษศาสตร์ชาวอังกฤษ เป็นค้นแรกที่พบว่าเซลล์มีพืชมีนิวเคลียสเป็นก้อนกลมๆ อยู่ภายในเซลล์

ปี พ.ศ. 2378 เฟ-ลิกซ์ ดือจาร์แดง นักสัตวศาสตร์ชาวฝรั่งเศส ศึกษาจุลินทรีย์และสิ่งมีชีวิตอื่นๆ พบว่าภายในประกอบด้วยของเหลวใสๆ จึงเรียกว่า ซาร์โคด ซึ่งเป็นภาษาฝรั่งเศสมาจากศัพท์กรีกว่า ซารค์ (((Sarx))) ซึ่งแปลว่าเนื้อ
ปี พ.ศ. 2381 ชไลเดน นักพฤกษศาสตร์ชาวเยอรมัน ศึกษาเนื้อเยื่อพืชชนิดต่างๆ พบว่าพืชทุกชนิดประกอบด้วยเซลล์
ปี พ.ศ. 2382 ชไลเดรและชวาน จึงร่วมกันตั้งทฤษฎีเซลล์ ซึ่งมีใจความสรุปได้ว่า "สิ่งมีชีวิตทุกชนิดประกอบไปด้วยเซลล์และผลิตภัณฑ์จากเซลล์"
พ.ศ. 2382 พัวกินเย นักสัตวิทยาชาวเชคโกสโลวาเกีย ศึกษาไข่และตัวอ่อนของสัตว์ชนิดต่างๆ ะบว่าภายในมีของเหลวใส เหนียว อ่อนนุ่มเป็นวุ้น เรียกว่าโปรโตพลาสซึม
ต่อจากนั้นมีนักวิทยาศาสตร์อีกมากมายทำการศึกษาเกี่ยวกับเซลล์ด้วยกล้องจุลทรรศน์ชนิดเลนส์ประกอบ และได้พัฒนาให้ดียิ่งขึ้น จนกระทั่งปี พ.ศ. 2475 นักวิทยาศาสตร์ชาวเยอรมัน คืออี.รุสกา และแมกซ์นอลล์ ได้เปลี่ยนแปลงกระบวนการของกล้องจุลทรรศน์ที่ใช้แสงและเลนส์มาใช้ลำอิเล็กตรอน ทำให้เกิดกล้องจุลทรรศน์อิเล็กตรอนขึ้นในระยะต่อๆมา ปัจจุบันมีกำลังขยายกว่า 5 แสนเท่า

ชนิดของกล้องจุลทรรศน์
กล้องจุลทรรศน์สามารถแบ่งออกเป็นประเภทใหญ่ๆได้ 2 ประเภท คือ กล้องจุลทรรศน์แบบแสง (Optical microscopes) และกล้องจุลทรรศน์อิเล็กตรอน((((Electron microscopes))))
กล้องจุลทรรศน์ชนิดที่พบได้มากที่สุด คือชนิดที่ประดิษฐ์ขึ้นเป็นครั้งแรก เรียกว่า กล้องจุลทรรศน์แบบใช้แสง (optical microscope) เป็นอุปกรณ์ใช้แสงอย่างหนึ่ง มีเลนส์อย่างน้อย 1 ชิ้น เพื่อทำการขยายภาพวัตถุที่วางในระนาบโฟกัสของเลนส์นั้นๆ
กล้องจุลทรรศน์แบบใช้แสง
Light microscope เป็นกล้องจุลทรรศน์ที่พบอยู่ทั่วไป โดยเวลาส่องดูจะเห็นพื้นหลังเป็นสีขาว และจะเห็นเชื้อจุลินทรีย์มีสีเข้มกว่า
Dark field microscoe เป็นกล้องจุลทรรศน์ที่มีพื้นหลังเป็นสีดำ เห็นเชื้อจุลินทรีย์สว่าง เหมาะสำหรับใช้ส่องจุลินทรีย์ที่มีขนาดเล็ก ที่ติดสียาก
Phase contrast microscope ใช้สำหรับส่องเชื้อจุลินทรีย์ที่ยังไม่ได้ทำการย้อมสี จะเห็นชัดเจนกว่า Light microscope
Fluorescence microscope ใช้แหล่งกำเนิดแสงเป็น อัลตราไวโอเลต ส่องดูจุลินทรีย์ที่ย้อมด้วยสารเรืองแสง ซึ่งเมื่อกระทบกับแสง UV จะเปลี่ยนเป็นแสงช่วงที่มองเห็นได้ แล้วแต่ชนิดของสารที่ใช้ พื้นหลังมักมีสีดำ

กล้องจุลทรรศน์อิเล็กตรอน
กล้องจุลทรรศน์อิเล็กตรอน (Electron microscope) เป็นกล้องจุลทรรศน์ที่มีกำลังการขยายสูงมาก เพราะใช้ลำแสงอิเล็กตรอนแทนแสงปกติและใช้สนามแม่เหล็กไฟฟ้าแทนเลนส์แก้ว เป็นกล้องที่ใช้ในการศึกษาโครงสร้าง และส่วนประกอบของเซลล์ ได้อย่างละเอียด ที่กล้องชนิดอื่นไม่สามารถทำได้

ส่วนประกอบของกล้องจุลทรรศน์


1.ฐาน (Base) เป็นส่วนที่ใช้วางบนโต๊ะ ทำหน้าที่รับน้ำหนักทั้งหมดของกล้องจุลทรรศน์ มีรูปร่างสี่เหลี่ยม หรือวงกลม ที่ฐานจะมีปุ่มสำหรับปิดเปิดไฟฟ้า
2.แขน (Arm) เป็นส่วนเชื่อมตัวลำกล้องกับฐาน ใช้เป็นที่จับเวลาเคลื่อนย้ายกล้องจุลทรรศน์
3.ลำกล้อง (Body tube) เป็นส่วนที่ปลายด้านบนมีเลนส์ตา ส่วนปลายด้านล่างติดกับเลนส์วัตถุ ซึ่งติดกับแผ่นหมุนได้ เพื่อเปลี่ยนเลนส์ขนาดต่าง ๆ ติดอยู่กับจานหมุนที่เรียกว่า Revolving Nosepiece
4.ปุ่มปรับภาพหยาบ (Coarse adjustment) ทำหน้าที่ปรับภาพโดยเปลี่ยนระยะโฟกัสของเลนส์ใกล้วัตถุ (เลื่อนลำกล้องหรือแท่นวางวัตถุขึ้นลง) เพื่อทำให้เห็นภาพชัดเจน
5.ปุ่มปรับภาพละเอียด (Fine adjustment) ทำหน้าที่ปรับภาพ ทำให้ได้ภาพที่ชัดเจนมากขึ้น
6.เลนส์ใกล้วัตถุ (Objective lens) เป็นเลนส์ที่อยู่ใกล้กับแผ่นสไลด์ หรือวัตถุ ปกติติดกับแป้นวงกลมซึ่งมีประมาณ 3-4 อัน แต่ละอันมีกำลังบอกเอาไว้ เช่น x3.2, x4, x10, x40 และ x100 เป็นต้น ภาพที่เกิดจากเลนส์ใกล้วัตถุเป็นภาพจริงหัวกลับ
7.เลนส์ใกล้ตา (Eye piece) เป็นเลนส์ที่อยู่บนสุดของลำกล้อง โดยทั่งไปมีกำลังขยาย 10x หรือ 15x ทำหน้าที่ขยายภาพที่ได้จากเลนส์ใกล้วัตถุให้มีขนาดใหญ่ขึ้น ทำให้เกิดภาพที่ตาผู้ศึกษาสามารถมองเห็นได้ โดยภาพที่ได้เป็นภาพเสมือนหัวกลับ
8.เลนส์รวมแสง (Condenser) ทำหน้าที่รวมแสงให้เข้มขึ้นเพื่อส่งไปยังวัตถุที่ต้องการศึกษา
9.กระจกเงา (Mirror) ทำหน้าที่สะท้อนแสงจากธรรมชาติหรือแสงจากหลอดไฟภายในห้องให้ส่องผ่านวัตถุโดยทั่วไปกระจกเงามี 2 ด้าน ด้านหนึ่งเป็นกระจกเงาเว้า อีกด้านเป็นกระจกเงาระนาบ สำหรับกล้องรุ่นใหม่จะใช้หลอดไฟเป็นแหล่งกำเนิดแสง ซึ่งสะดวกและชัดเจนกว่า
10.ไดอะแฟรม (Diaphragm) อยู่ใต้เลนส์รวมแสงทำหน้าที่ปรับปริมาณแสงให้เข้าสู่เลนส์ในปริมาณที่ต้องการ
11.แท่นวางวัตถุ (Speciment stage) เป็นแท่นใช้วางแผ่นสไลด์ที่ต้องการศึกษา
12.ที่หนีบสไลด์ (Stage clip) ใช้หนีบสไลด์ให้ติดอยู่กับแท่นวางวัตถุ ในกล้องรุ่นใหม่จะมี Mechanical stage แทนเพื่อควบคุมการเลื่อนสไลด์ให้สะดวกยิ่งขึ้น
13.แท่นวางวัตถุ (Stage) เป็นแท่นสำหรับวางสไลด์ตัวอย่างที่ต้องการศึกษา มีลักษณะเป็นแท่นสี่เหลี่ยม หรือวงกลมตรงกลางมีรูให้แสงจากหลอดไฟส่องผ่านวัตถุแท่นนี้สามารถเลื่อนขึ้นลงได้ด้านในของแท่นวางวัตถุจะมีคริปสำหรับยึดสไลด์และมีอุปกรณ์ช่วยในการเลื่อนสไลด์ เรียกว่า Mechanical Stage นอกจากนี้ยังมีสเกลบอกตำแหน่งของสไลด์บนแทนวางวัตถุ ทำให้สามารถบอกตำแหน่งของภาพบนสไลด์ได้

วิธีการใช้กล้องจุลทรรศน์
การใช้กล้องจุลทรรศน์แบบใช้แสง ( Light microscope)
1.วางกล้องให้ฐานอยู่บนพื้นรองรับที่เรียบสม่ำเสมอเพื่อให้ลำกล้องตั้งตรง
2.หมุนเลนส์ใกล้วัตถุ ( objective lens )อันที่มีกำลังขยายต่ำสุดมาอยู่ตรงกับลำกล้อง
3.ปรับกระจกเงาใต้แท่นวางวัตถุให้แสงเข้าลำกล้องเต็มที่
4.นำสไลด์ที่จะศึกษาวางบนแท่นของวัตถุ ให้วัตถุอยู่กึ่งกลางบริเวณที่แสงผ่านแล้วค่อยๆ หมุนปุ่มปรับภาพหยาบ(coarse adjustment knob)ให้ลำกล้องเลื่อนลงมาอยู่ใกล้วัตถุมากที่สุด โดยระวังงอย่าให้เลนส์ใกล้วัตถถุสัมผัสกับกระจกปิดสไลด์
5.มองผ่านเลนส์ใกล้ตา (eyepiece)ลงตามลำกล้อง พร้อมกับหมุนปุ่มปรับภาพหยาบขึ้นช้าๆ จนมองเห็นวัตถุที่จะศึกษา แล้วจึงเปลี่ยนมาหมุนปรับปุ่มภาพละเอียด(fine adjustment knob)เพื่อปรับภาพให้ชัด อาเลื่อนสไลด์ไป มาช้าๆ เพื่อให้สิ่งที่ต้องการศึกษามาอยู่กลางแนวลำกล้อง ขณะปรับภาพ ถ้าเป็นกล้องสมัยก่อนลำกล้องจะเคลื่อนที่ขึ้นและลงเข้าหาวัตถุ แต่ถ้าเป็นกล้องสมัยใหม่แท่นวางวัตถุจะทำหน้าที่เลื่อนขึ้นลงเข้าหาเลนส์วัตถุ
6.ถ้าต้องการขยายภาพให้ใหญ่ขึ้น ให้หมุนเลนส์ใกล้วัตถุอันที่มีกำลังขยายสูงขึ้นเขข้ามาในแนวลำกล้อง และไม่ควรขยับสไลด์อีก แล้วหมุนปรับภาพละเอียดเพื่อให้เห็นภาพชัดเจนยิ่งขึ้น
7.การปรับแสงที่เข้าในลำกล้องให้มากหรือน้อย ให้หมุนแผ่นไดอะแฟรม (diaphram) ปรับแสงตามต้องการกล้องจุลทรรศน ์ ที่ใช้กันในโรงเรียนจะมีจำนวนเลนส์ใกล้วัตถุต่างๆ กันไปเช่น 1 อัน 2 อัน หรือ 3 อัน และมีกำลังขยายต่างๆกันไป อาจเป็น กำลังขยายต่ำสุด x4 กำลังขยายขนาดกลาง x10 กำลังขยายขนาดสู’งx40, x80 หรือที่กำลังขยายสูงมากๆ ถึงx100 ส่วนกำลังขยาย ของเลนส์นั้นโดยทั่วไปจะเป็นx10 แต่ก็มีบางกล้องที่เป็นx5 หรือx15 กำลังขยายของกล้องจุลทรรศน์คำนวณได้จาก ผลคูณของกำลังขยายขอองเลนส์ใกล้วัตถุกับกำลังขยายของเลนส์ใกล้ตา ซึ่งมีกำกับไว้ที่เลนส์

การระวังรักษากล้องจุลทรรศน์
เนื่องจากกล้อองจุลทรรศน์เป็นอุปกรณืที่มีราคาสูงและมีส่ววนประกอบที่อาจเสียหายง่าย โดยเฉพาะเลนส์ จึงต้องใช้และเก็บรักษาด้วยความระมัดระวังให้ถูกวิธี ซึ่งมีวิธีปฏิบัติดังนี้
1.การยกกล้อง ควรใช้มือหนึ่งจับที่แขนกล้อง (arm) และอีกมือหนึ่งวางที่ฐาน(base) และต้องให้ลำกล้องตั้งตรงเสมอ เพื่อป้องกันการเลื่อนหลุดของเลนส์ใกล้ตา ซึ่งสามารถถอดออกได้ง่าย
2.สไลด์และกระจกปิดสไลด์ต้องไม่เปียก เพราะอาจทำให้แท่นวางเกิดสนิม และทำให้เลนส์ใกล้วัตถุชื้นอาจเกิดราที่เลนส์ได้
3.ขณะที่ตามองผ่านเลนส์ใกล้ตา เมื่อจะต้องหมุนปุ่มปรับภาพหยาบ ต้องหมุนขึ้นเท่านั้น ห้ามหมุนลง เพราะเลนส์ใกล้ตาอาจกระทบกระจกสไลด์ทำให้เลนส์แตกได้
4.การหาภาพต้องเริ่มต้นด้วยเลนส์วัตถุกำลังขยายต่ำสุดก่อนเสมอ เพราะปรับหาภาพสะดวกที่สุด
5.เมื่อใช้เลนส์ใกล้วัตถุที่มีกำลังขยายสูง ถ้าจะปรับภาพให้ชัดให้หมุนเฉพาะปุ่มปรับภาพละเอียดเท่านั้น
6.ห้ามใช้มือแตะเลนส์ ในการทำความสะอาดให้ใช้กระดาษสำหรับเช็ดเลนส์เท่านั้น
7.เมื่อใช้เสร็จแล้วต้องเอาวัตถุที่ศึกษาออก เช็ดแท่นวางวัตถุและเช็ดเลนส์ให้สะอาด